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Electronic Structure of CsN», CgN», and Isoelectronic Molecules

K. Chuchev and J. J. BelBruno*

Center for Nanomaterials Research, Department of Chemistry, Dartmouth College,
Hanaver, New Hampshire 03755

Receied: Nawember 7, 2002; In Final Form: January 9, 2003

Density functional calculations (B3LYP/cc-pVTZ) have been used to determine the ground-state energies
and bonding in @\, and GN; and isoelectronic molecules including@ CH,, C,N~. and GO2?". In general,

the odd numbered carbon clusters have triplet ground states and are more cumulenic, whereas the even clusters
are singlets in the ground state and acetylenic in structure. Energies and structures of the lowest excited
states of different multiplicity have also been calculated, and CASSCF calculations (CASSCF/cc-pVTZ//
B3LYP/cc-pVTZ) were employed to estimate the vertical transition energies between the states. The transitions

for the GN, series are dominated by the 4> 57 excitation and the transition energies lie in a small range,
spanning less than 0.5 eV. The separation between spin states is much greéte¥/,Zor the GN; series

of clusters. The effect of the heteroatoms on the molecular orbital structure of each series of target molecules
is discussed.

Introduction in which the cluster consists of double bonded atoms; the even

. . . . clusters are expected to be purely acetylenic.
Carbon clusters are important in basic chemical processes P purely y

and in interstellar chemistry. In addition, those terminated by . .
heteroatoms have been of special theoretical and experimental :N=C-C=C-C=C-C=N: <-> :N=C=C=C=C=C=C=N:
interest for many years.” This focus resulted, in part, from
materials science developments. In materials science, newHowever, detailed information on the relevant molecular orbitals
methods of deposition involving clusters and the application of as well as a context for understanding the physical properties
self-assembly techniques and surface-cluster interactions requiréhas not been provided. To provide a more detailed understanding
detailed knowledge of the geometry and electronic structure of of the dicyano-carbon clusters, we have undertaken calculations
a range of carbon containing molecules. Computational studiesof related isoelectronic clusters, including ground and low lying
provide this information that is important for the evolution of excited-state structures and energies and the nature of the
the field. molecular orbitals. A combination of density functional theory
We have recently completed surveys of the geometries andand CASSCF methods were used to arrive at the relevant data.
electronic structures of S (and its anion and catichfior n <
17, as well GN and GN, wheren < 11, using density  computational Details
functional theory?. In the latter, the focus was on the lowest
energy conformer and the reported results, whereas covering a The B3LYP functional with Dunning’s correlation consistent
range of clusters included mostly the nitrogen-terminated linear polarized valence triplé-basis set, cc-pVTZ, as implemented
forms. Studies of structural parameters for thi\g series of in the Gaussian 98 suifeof programs was used to determine
linear clusters have indicated a fundamental difference in the equilibrium geometries and physical properties in the lowest
structure of odd and even carbon heteroclusters, so that the twasinglet and triplet electronic states. The complete active space
maybe considered as separate series. Conceptually, liplar C  method (CASSCF) available within the same program was used
clusters with terminal nitrogen atoms may be thought of as to calculate the vertical energy differences between the ground
resulting from a mixture of resonance structures. and excited states, using the same basis set. The HOMO and
For odd-numbered carbon structures, agN{n particular, LUMO in all cases arer-orbitals. Extensive CASSCF calcula-
the blending of the possible resonance forms implies that the tions, involving 8 or 12 electrons, were completed for selected
observed structure should tend toward a cumulenic form with species as a check on the inclusion of all of the relevant

elongated triple bonds and shortened single bonds. configurations and convergence of the transition energies. Based
on these results, a two-electrofive-orbital active space (2,5)
:NaC-C=C=C-C=N: <-> :N=C-C=C-C=C=N: <-> :N=C=C-C=C-C= N: is employed for the €N, analogues and a four-electresix-

orbital active space (4,6) for thegl8, analogues. The added
For even-numbered carbon structures, such ah,Cthe computational cost of the more extensive active space was not
geometry results from a hypothetical mixture of a resonance Justified by the minimal change in transition energies. An

structure involving alternating single and triple bonds and one 2dditional set of DFT calculations using the augmented basis
set that includes diffuse, nonpolarization orbitals, aug-cc-pVTZ,
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Figure 1. Bond lengths and relative energies for singtaglet CsN, earlier?® The cumulenic effect is more clearly shown in the

and isoelectronic species using the B3LYP/ cc-pVTZ theoretical Structures for N~ and GO, where no carboncarbon triple
method. The last two entries show calculated structures at the B3LYP/ bond is indicated at all. Previous calculatidisyith a slightly

aug-cc-pVTZ level of theory. smaller basis set, reported bond lengths gDCGs 1.1794,
_ _ 1.2889, 1.2854, 1.2833, 1.2980, and 1.3098 A, in good agree-
Results and Discussion ment with the current work. No acetylenic bonding trends are

There have been experimental and computational studies ond€tected until we reach a significantly longer carbon chain,
selected molecules from among the members of this class of 1C7H. but the effect is small.
dinitrogen clusters, although the theoretical level of the calcula- ~More data exists for the even carbon clustefN§; because
tions and the objective of those calculations were not always the geometry is more amenable to computational techniques.
directly relevant to the present study. Among the dicyanopoly- Calculations with the same theoretical method used in this study
ynes, the @GN, isomers have been examined both experimen- have been reported for both theNG and GH: clusters® The
tally' and computationallyL-12C,N, clusters have been detected relative energies of the ground singlet and excited triplet states
in astrophysical studie$;}4 observed in the laborato#y,and were not included in that previous report. Earlier calculations
studied computationallif-18 CsN, conformers have been with smaller basis sets report bond lengths #{®©&@s generally
studied both experimental§yand computationall§?-*whereas cumulenic: 1.287,1.297, 1.271, 1.286, 1.272, 1.286, and 1.169
CeN, conformers have been explored in recent computational A for the ground singlet state (CCSD/aug.cc-pVDZ//B3LYP/
and experimental studi@d.Here, we compare the geometry, 6-31G*F"and 1.2942,1.3000, 1.2747, 1.2883, 1.2764, 1.2884,
MO structure, and transition energy fOrSN:Q, CsNo, and and 1.1753 A (BLYP/6'3116**)"4 Our results are in gOOd
isoelectronic series of clusters. The specific isoelectronic @greement with these reports. No geometry for the lowest triplet
molecules of interest here have not received much attention.State has been reported. Finally, the most recent Studythe
Calculated structures for the,O clusters, including € and C7N™ ground state using the B3LYP/6-311G* (B3LYP/aug-cc-
C;0, have been reportéd?* but no structures exist for the ~PVTZ) method reported bond lengths of 1.262 (1.256), 1.330

remaining GNZ' or CnN2_||ke clusters. (1330), 1.242 (1238), 1.328 (1328), 1.233 (1230), 1.350
Geometries.We have previously shown that the computa- (1.349), and 1.169 A (1.166 A). The bond lengths in Figure 2
tional technique used here underestimates the carbitrogen indicate that polyacetylenic bonding is dominant in these

triple bond by 0.0055 A and the carbenarbon singlet bond  clusters. The polyacetylenic bonding effect is least obvious in
by 0.0060 A. The details on these estimates may be found in the structure for €0, where there is clearly an alternation in
the literature®25 The B3LYP/cc-pVTZ optimized bond lengths ~ Pond lengths, however, the difference is slight.
of CsNy, CsO, GN~, HC;H, and GO,2" are shown in Figure The results in the lower half of Figure 1 indicate that the
1, along with those of g, for comparison. The relative energies  inclusion of diffuse functions, the aug-ccpVTZ basis set, has
of both the ground-state triplet and the lowest singlet state areno effect at all on the calculated parameters fgN£ the bond
also presented in the figure for each cluster. The analogous datdengths and the relative energies of the two electronic states
are presented in Figure 2 forel, and its isoelectronic are unchanged. At least for the symmetrigNg clusters, this
molecules. added computational effort is not worthwhilesR and GN

For the odd carbon clustergi;, a calculation with a smaller ~ are not isoelectronic; however, they are analogous clusters. The
basis set reported bond lengths of 1.182, 1.335, and 1.274 A calculated structural parameters reflect this similarity in the
beginning with the carbonnitrogen triple bond? The authors ~ cumulenic bonding. Note that the terminat-€ bond is short
also report that the ground-state triplet lies 0.30 eV below the in comparison to both a-€P single bond (CkP: 1.86 A) and
lowest singlet state. A later report, using a more extensive basisa C=P double bond (CkP: 1.67 A)?° The best description
set reports an energy difference of 0.828\he bond lengths ~ for the bond in this cluster is as a strong double bond.
in Figure 1 indicate that cumulenic bonding is dominantinthese  Molecular Orbitals. By definition, all of the GN-like
clusters. In the dicyano cluster, the carbmitrogen bonds are  species have & ground state and the same electronic
slightly elongated from those typical of a triple bond, whereas configuration, &2 902...15? 17* 27* 37* 47%, however, the
the carbor-carbon bonds have slight deviations from the energy ordering of these orbitals differs among the isoelectronic
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Figure 3. Occupied molecular orbitals for isoelectronic species,
compared with those of 8.

species. The relative orbital energies are shown in Figure 3. In
general, the highest occupied orbtials argype. However, the
similarity is only qualitative. In particular, there are significant
variations in the energies of the highesbrbtials, both with
respect to the relative ordering and to the energy spacing
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TABLE 1: Vertical Transition Energies to the Lowest
Excited State

molecule/ion AE, eV molecule/ion AE, eV
to thelX state
HC/H 0.14 NGN 0.49
CsO 0.31 0G0?*" 0.54
CeN™ 0.43
to the3Z state
(o760} 2.01 0GO%* 4.27
C:/N™ 3.58 HGH 472
NCsN 4.24

tronic species. However, the energy ordering and the changes
observed in moving through the different isoelectronic species
are identical to those just described for theNglike species
and shown in Figure 3. The additional six electrons, due to the
added carbon atom, occupy two additional carerbitals and
complete the occupation of the highasbrbital. The additional
7 electrons provide a higher bond order, but the interactions
induced by the terminal atoms and the conclusions remain
identical to those observed inid,. For both series of molecules,
the LUMO is a set ofr orbitals.

Transition Energies to the Lowest Excited StateBecause

between orbitals. Compared to a pure carbon chain, it is expectedhe transitions involve triplet states and the MOs include

that the GN, orbital energies would be stabilized by mixing in
orbitals from the heteroatoms and by the symmetry of the
cluster. The extent of this stabilization, because of the two
terminal heteroatoms, is clear from Figure 1. l§Ng the 14

relatively close-spaced orbitals, there is the possibility of error

if a single electron configuration is employed in the vertical
transition energy calculations. Time-dependent DFT is one
possible solution to this problem; however, the method is only

and 1% orbitals are essentially degenerate and are energeticallydefined in the currently available quantum chemistry packages

intermediate with respect to the set of foumworbitals. In both
CsO and GN, this degeneracy is removed. FosNG, the two
high-lying o orbitals are equally stabilized by mixing carbon
and nitrogen atomic orbitals to construct the molecular orbitals.
In CsO, the twoo levels split with one increasing and one
decreasing in energy. Ing~, both orbitals increase in energy
but by different amounts, also removing the degeneracy. In both

for closed shell systems. The application to open shell systems
remains a research topic. An alternative solution is to use a
multiconfigurational SCF technique. The most computationally
efficient approach is the complete active space method. The
8% — 13 and !z — 3% vertical transition energies for the two
series of clusters, calculated by the multiconfigurational CAS-
SCF method, are shown in Table 1. For theN€analogues,

cases the removal of the degeneracy results from the availabilityenergies were obtained at the DFT optimized geometries of the

of only a single heteroatom to interact with the carbon chain
and the fact that the two orbitals are no longer symmetry
forbidden from a second-order interaction. Thesld CsO
includes a contribution from the oxygen atomic orbitals, whereas
the 1% is purely a function of carbon atomic orbitals. This
distinction is not present in ¢8I~ where there are nitrogen
atomic orbital contributions to both #4and 1% but to a very

ground states, a CASSCF (2,5)/cc-pVTZ// B3LYP/cc-pVTZ
model. The excited states result from configurations in which
there arer—smr transitions from the ground-state triplet, and
hence, a two-electrotfive orbital active space calculation is
sufficient to include all important contributions to configuration
interaction and obtain the transition energy. This calculation
uses 10 electron configurations for triplets and 15 configurations

different extent. There are also significant changes in the energyfor singlets. Three configurations, involving ther &nd 4t

spacings of the MOs for these two species; the splittings@ C

orbitals, dominate the singlet state, and the triplet ground state

is much greater, presumably because of the greater electroneis describgd by essentially a single configuration involving the
gativity of the heteroatom. The negative charge is somewhat same orbitals.

delocalized in GN-, and this effect also contributes to an
increase in orbital energies relative tg@ For both HGH and
Cs0,2™, the twoo orbitals remain essentially degenerate because
of the symmetry but are substantially lowered in energy relative
to GsNa. For GHy, the addition of a hydrogen 1s component to
the MO is more efficient than the mixing of higher order
components in €D,2", and the shift in energy for the-8, ¢
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At this level of calculation, configurations involving the
remaining virtual levels do not contribute to any significant

orbitals, relative to ther orbitals, is greater. The presence of extent (<5%, total, for configurations other than those shown

two oxygen heteroatoms, as compared with two hydrogen or ahove). In the case of the singlet, the configuration with the
nitrogen atoms, along with the charge on the terminal atoms partially occupied orbitals constitutes approximately 65% of the
significantly lowers all of the orbital energies in comparisonto wave function and the remaining two configurations each
CsN2. The analysis of the MOs indicates thagNz and its  contribute approximately 15%. The triplet state is composed of
isoelectronic species will have similar excitations and similar the Sing|e Configuration shown to the extent of greater than 96%.
transition energies. The latter are expected to be relatively small. These observations on the configurations remain valid even if

The electronic configuration of thesN,-like species is &
902...170? 17* 27* 3n* 47, and the ground state 1X. Again,

the energy ordering of these orbitals differs among the isoelec-

as many as 12 electrons and 12 orbtials are added to the active
space. In all cases, the singlet state lies close to the ground state
triplet. Moreover, there is little change in geometry upon
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excitation to the singlet state. All transition energies lie within assistance of Mr. John Wallace were essential to the successful
a small range of approximately 0.5 eV. From the MO point of completion of this research.
view, these low transition energies are to be expected, because
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